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Abstract. We study the plateau of the magnetization curvéfa:= Ms/3 (Ms is the saturation
magnetization) of th& = % trimerizedX X Z spin chain. By examining the level crossing of low-
lying excitations obtained from the numerical diagonalization, we precisely determine the phase
boundary between the plateau state and the no-plateau state An-thelane, whereA denotes
the X X Z anisotropy and the magnitude of the trimerization. This quantum phase transition is of
the Berezinskii—Kosterlitz—Thouless type.

1. Introduction

In recent years the quantized plateau of the magnetization curve of spin chains has attracted
much attention. Hida [1] numerically studied tise = % ferromagnetic—ferromagnetic—
antiferromagnetic trimerized Heisenberg chain and found the plateau of the magnetization
curve atM = Mg/3 (Ms is the saturation magnetization) for some parameter region of
Je/Jar, WhereJg andJar are the ferromagnetic and antiferromagnetic couplings, respectively.
KO [2] analytically investigated Hida’'s model to clarify the mechanism for the appearance
and disappearance of thd = M;/3 plateau. Later related numerical and theoretical
findings [3-8, 11, 12, 14] are reported in the literature. The magnetization plateaus are also
found experimentally it§ = 1 Ni compound [N3(Medp?),(-0x)(-N3)]ClO4 x 0.5H,0 [9]
and inS = % Cu compound NECuCk [10]. The behaviour of the magnetization curve of
NH4CuClk is quite remarkable because magnetization plateaus are obser)\deel:a(t%)MS
andM = (3)MsbutnotatM = 0 andM = (3)Ms.

Oshikawagt al [7] gave the necessary condition for the appearance of the magnetization
plateau:

n(S — (m)) = integer @)
where n is the periodicity of the state§ the magnitude of spins an@in) the average
magnetization per one spin. Since (1) is the necessary condition, it depends on the details
of the models whether the magnetization plateau exists or not, even if condition (1) is satisfied.

In this paper we study th& = Ms/3 plateau of the§ = % trimerized X X Z spin chain
described by

H =

L
{J Thaj—23j-1(A) + haj_13;(A)] + Jh3j 3/41(A)} 2

j=1
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J J J J J
_O () ) () () O_ Figure 1. Sketch of the trimerized(XZ chain.

~ ~ ~ ~ The expression of the lower line corresponds to the
Jo(1+20) Jo(1-1)  Jo(1=1) Jo(1+28) Jo(1-1) parametrized form (4).

where

hlm(A) = h[J,_n + Ahlzm
hi:, = S;SE +S'SY hi, =SS,

3)

m m*
Our model is sketched in figure 1. Unfortunately there seems to be no report of finding the
Ms/3 plateau in existing one-dimensional materials to which the present model is applied.
However, our model is closely related to a ferromagnetic—ferromagnetic—antiferromagnetic
chain 3Cud] - 2dioxane [1, 13], as will be discussed in section 4.

In section 2 we qualitatively discuss the properties of the transition between the plateau
and no-plateau states by use of the bosonized Hamiltonian. In section 3 we determine the
phase boundary between the plateau and no-plateau states from the numerical diagonalization
data by examining the crossings of the low-lying excitations [15]. Section 4 is devoted to a
discussion.

2. Transition between the plateau state and the no-plateau state

It is convenient to parametrize the Hamiltonian (2) as

L
H=Jo) {(1—0lhsj-23-1(A) +haj_13;(A)]+ (1 +2)hs;3/11(A)) 4
j=1
where
2 +J J —J
= = — . 5
°=73 YY) ®)

The model is sketched in figure 1. The bosonized expression of the Hamiltonian (4) can be
obtained by the following procedure:

(a) Transforming (4) into the spinless fermion expression by use of the Jordan-Wigner
transformation. The spacing between the neighbouring spins is taken as the unit length.

(b) Linearizing the dispersion relation of the spinless fermiang) = Jycosk around
k = +kg, wherekg = /3 corresponds to the band filling 8 = Ms/3. The Fermi
velocity atk = kr is vp = (v/3/2) Jo.

(c) Taking the effects of trimerization and the interactions between fermions into account
through a procedure similar to that of the standard bosonization technic.

From the above procedure, we obtain the following sine—Gordon Hamiltonian:

_ 1 2, Us ¢ 2 Yo Us
H—Z/dX[USK(JTH) +E<£):|+§/dx COS\/E(p (6)

whereus is the spin wave velocity of the systeif,is the momentum density conjugateg¢p
[¢(x), IT(x")] =i8(x — x), and the coefficientss, K, andy, are related tdp, r andA as

1 /C
Vg = x/éJO«/AC K = Z\/; YpUs = ot (2 +A) 7
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Figure 2. Flow diagram of the renormalization group equation (11). The
Platleau thick solid lines show the BKT lines and the thick dotted line the Gaussian
line.
where
: ( - ) ( 1 )
A=—(1+—A c=2n(1-—=-A). (8)
8m \/:_’)7'[ «/l_’:n

We note that the expressions farand C are in the lowest order oh. The dual fieldd is
defined byd,# = =TI, and we make the identificatiah = ¢ + /27, 6 = 6 + V/27. We
note that the umklapp term (which exists in the= 0 case and is important to describe the
transition between the spin-fluid state and theeNstate) does not exist, becauge B not
equal to the reciprocal lattice wavenumbers. The ffelslrelated to the fast varying (in space)
part of the spin densit§?(x) in the continuum picture as

S2(x) = % {COS(ZkFx - % +/2) + %} )
which makes the physical meaningg#tlear. We note that the slowly varying part of the spin
density is proportional td¢/0x.

As is well known, the excitation spectrum of the sine—Gordon model is either massive or
massless depending on the valuekofindy,. In the massive case thés/3 magnetization
plateau exists, and in the massless case it does not [2]. Itis convenient to discuss the properties
of (6) in the framework of the renormalization group method. The renormalization group
equations for (6) are

dK (L)t 1, dys (L) _ K(L)

T = Ghe = (1) o
whereL is an infrared cutoff. Denoting (L) = 4(1 + yo(L)/2) nearK (L) = 4, we obtain

dyo (L) 2 dys (L) _

Th = W' R = Tele(D) -

and show its flow diagram in figure 2. The Berezinskii—Kosterlitz—Thouless (BKT) transition
occurs atyg = |y,|, shown by thick solid lines. The BKT nature of the transition between the
plateau state and the no-plateau state was first pointed out by one of the present authors (KO)
in [2]. At the BKT transition point, by substituting, = |y, | into equation (11), we have

_ Yo
o) = /Lo + 1 (12)

whereyy is the bare value. When, < 0 (i.e., K < 4), any small (but not equal to zero)
amount of trimerization brings about the magnetization plateau. The phase boundary between
two plateau regions is a Gaussian line (thick dotted line), on which the critical exponents varies
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continuously. In the no-plateau region, the effect of the trimerization vanishes in the sense of
the renormalization group due to the strong quantum fluctuations.

We note that it is dangerous to apply the conventional phenomenological renormalization
group method to the BKT transition, as is fully discussed in [16].

3. Numerical approach

The scaling dimension of the primary fietd}, , = expm~/2¢ + n+/26) for y, = 0 is given
by
Xpm = gmz + %nz (13)

wheren andm are integers with the periodic boundary condition (PBC). According to the
finite-size scaling theory by Cardy [17, 18], the excitation energy of the finite-size system at a
critical point is related to the scaling dimension as

L
27 vg
whereE, (L) is the ground state energy of thespin system with PBC. Near the BKT transition
(K =~ 4), the excitation energy is written as

xm,n(L) = (Emn(L) - Eg(L)) (14)

AE, o(L) = 2m® + yo(L)m? (15)
27 vg
AEo,(L) L2 (L)1 2 (16)
n =5 — el
orvg O g" — Y76

for integerm, n. Thus, considering equation (12), we have the logarithmic corrections for a
finite-size spectrum.

To determine the BKT transition point, we use the method developed by Nomura and
Kitazawa [15], in which the level crossings for some excitations are used. With the twisted
boundary condition (TBC¥3;,; = —S;”, 85, = Si, the integern in the operato©,, ,
shifts tom +% asO,,,n — Op+1/2.0. FOrthe scaling dimensions of the operato@cos(qb/«/ﬁ)
and+/2 sin(¢/+/2) we have the following finite-size corrections:

Xjp0(L) = 5+ 7y0(L) + 3y4(L)
X50(L) = 3+ 3y0(L) = 3Y4(L).
Note that scaling dimension@szqo are not of the form of (15). This comes from the first-order

perturbation of the second term (c@&¢ term) in equation (6). Denoting, = £yo(1 +w)
wherew measures the distance from the BKT transition point, we have,for O

(17)

x5 20(L) = 3+ 3y0(L)(1 +3w) 1)
x320(L) = 3 — 3y0(L)(1 + 2w)
and fory, < 0
xS, 0(L) = 2 — 1yo(L)(1 + 2w)
1/2,0 i 2)0 (19)

X3120(L) = 5+ §y0(L) (L + Fw).
On the other hand, from equation (16) the scaling dimensia@af, is given by
xo.42(L) = 5 — zyo(L) (20)

from which we see thatg 1, andxf/szO (s fory, > 0 and c foryy, < 0) cross linearly at the
BKT transition point v = 0).
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In order to identify the excitations with those of the sine—-Gordon model (6), we can use
the following symmetry. The Hamiltonian with PBC is invariant under the spin rotation around
the z axis, the translation by three sites;;(— S;.3), and space inversior§{ — S;_;+1).
Corresponding eigenvalues avg the wavenumbeg, andP = +1. The space inversions in
the sine—Gordon model are

o —> —¢ 9—>9+n/\/§ X — —X. (22)
The magnetizatioM is related to: asn = Ms/3 — M. The ‘ground state’ energ, is the
lowest one with M = M¢/3,¢q =0, P = 1].

In our model, the energy level corresponding to the opeKdgar, is Eq(Ms/3+ 2,0, 1),
whereEq(M, g, P) isthe lowest energy withif, ¢, P]. However, we cannot directly compare
the energies with differen¥. In the language of the spinless fermions, the differencé in
corresponds to the difference in the number of fermiatis,Thus to compare the energies
with different M, we should us& — N, wherep is the chemical potential of the spinless
fermions. Sincq: nearMs/3 is expressed as

1 Ms MS
=—1Ey| —+20,1) - E;y| —-2,0,1 22
M4{0<3 ) 0(3 )} 22)

the excitation energy correspondingdg » is

M. M,
AEgp = {EO (f +2,0, 1) — Ep (?S 0, 1) - zﬂ}

1 My Mg Mg
= —+ + — — — .
Z{Eo( 3 2,0,1) Eo( 3 2,0,1)} Eo< 3 ,0,1) (23)

The same expression is obtained ¢y _,. Equation (23) can also be obtained by use of the
Legendre transformatiof — E — HM.

The excitation energies corresponding to the operat@sog¢ /+/2) and/2 sin(¢ /v/2)
are obtained by the two lowest energieg (M, P) with the twisted boundary condition as

M M
AES;, = E™° (f 1) —E (f 0, 1)
M. M
TBC S S
sEtag= £ (M5 2) - £ (.0)

whereE (Ms, 0, 1) is the lowest energy with PBC. The excitation energié€s andAEf'/Sz,0
(sforys > 0 and c fory, < 0) should cross linearly at the BKT transition point.

Figure 3 shows the behaviour &fE, 1, and AEE/ZO for L = 18 spins as functions of
anisotropy parametex when: = —0.25. From the crossing point, we obtaly = —0.8389
for L = 18 spins. The BKT transition point for the infinite system can be obtained by
extrapolating theA. data toL = oo, as shown in figure 4. Thus, we can draw the phase
diagram figure 5 on th& — ¢ plane. The point MA = —0.729) is the multicritical point
where two BKT lines meet together into the Gaussian line (shown by the thick dotted line)
on which the critical exponents vary continuously. The< —1 region is the ferromagnetic
region.

In order to check the consistency, let us confirm the conformal anomalyl which is
related to the leading finite-size correction of the ‘ground state’ energy with PBC as [19, 20]

Eq(L) = Leg — ”6'26 + (25)

wheree, the energy per one spin for the infinite-size system. The spin wave velgain
be obtained by

(24)

LAE(q =27/L
ve = lim (g =2r/L)

L—00 2

(26)
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Figure 3. AEp 42 and AEE/z,o for L = 18 spins as Figure 4. Extrapolation ofA¢ to L = oo whent =
functions of anisotropy parameter whens = —0.25. —0.25. We obtainA; = —0.839.
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Figure 5. Phase diagram on th& — 7 plane. Closed Figure 6. Spin wave velocity on the BKT transition line.
circles are the BKT transition point determined from the

numerical data as explained in the text. The thick dotted

line denotes the Gaussian line. The multicritical point M

corresponds to the point O of figure 2.

whereAE (g = 2 /L) is the lowest excitation energy having the wavenumper 2/L in
the M = Ms/3 space. Thus we can check the value &fy use of equations (25) and (26).
We have found that = 1 is realized on the BKT line within the error of a few per cent. For
instance, in the case o¢f, A) = (0.5, —0.881) on the BKT line, we obtaingc = 0.212J
through equation (25) ang = 0.217J, through equation (26). Figure 6 shows the spin wave
velocity vs on the BKT transition line.

From equations (17) and (20), we can eliminate the leading logarithmic correction at the
transition point v = 0) using the following average:

X7 0(L) +x30(L) 1
1/2,0 2008 1 for v >0
c 4 2 @7)
3x1/p0(L) +x350(L) 1
2 =5 for y, <O.

This relation is appropriate to the consistency check. The averaged scaling dimension
equation (27) on the BKT line is shown in figure 7. We can see that the averaged scaling
dimension is very close té, which guarantees the consistency of our numerical method.
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4. Discussion

We have obtained the phase diagram onshe ¢ plane as shown in figure 5. Two BKT lines
meet together into the Gaussian line at the multicritical point M witete Ay = —0.729. If
we putk = 4 in equations (7) and (8), we obtaity, = —3+/37/21 = —0.777. This value is
slightly different fromAy, = —0.729, because the expression (8) is valid in the lowest order
of A nearA = 0. In the absence of the trimerizatian= 0), the present model is reduced to
the usualS = % X X Z chain, which is solvable by the Bethe ansatz. The numerical solution of
the Bethe ansatz equations leadaip = —0.729 043 forM = My/3 andK = 4[12,21,22],
which just agrees with our numerical values.

In figure 5, the slopes of the BKT lines for > 0 andr < O near the multicritical
point M are the same as each other. This can be explained from the symmetry of the
bosonized Hamiltonian (6). Hamiltonian (6) is invariant under the transformatien —¢
and+/2¢ < /2¢ + . Away from the multicritical point M, on the other hand, the BKT
lines on the upper and lower planes are asymmetric with each other, as can be seen from
figure 5. This is quite reasonable becausertke —r symmetry does not hold in the original
spin Hamiltonian (4). From the standpoint of the bosonized Hamiltonian, this comes from
the existence of higher-order terms [23] ¢2¢), cog4+/2¢), . . ., of which coefficients are
also proportional to the trimerization parameteif these higher-order terms are taken into
account, the symmetry of the bosonized Hamiltonian under the transformation-r and
V2¢ <> \/2¢ + 7 is lost, which explains the asymmetry of the BKT lines.

The mass-generating term in (6) is

w / dx cos+v/2¢).

In the factor 2 +A, the first term comes from the and y components of the trimerization,

and the second term from thecomponent. Whem < 0, they are competing. In the= %
ferromagnetic—antiferromagnetic alternating chain [24, 25], this kind of competition brings
about the transition between the Haldane state and the lagate. In our case, however, this
competition only reduces the effect of the trimerization. In fact, we obtain the phase diagram
figure 8 for the xy-trimerization model’ in which the trimerization exists only in th& — J*

andJ> — J” couplings and not in thé* — J¢ coupling. We see that the trimerization effect is
reduced in figure 5 in comparison to figure 8, because the no-plateau region is wider in figure 5
than in figure 8. We note that the phase boundary of the ferromagnetic region is no longer
A = —1, because th8U (2) symmetry is broken even &t = —1 in thexy-trimerization

(28)
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model. This situation is similar to thg = % XXZ chain under the staggered magnetic
field [26]. This phase boundary can be calculated from the instability of the ferromagnetic
state against th&f = Mg — 1 spin wave excitation, resulting in

_1+2+VQ—12+122
7 .

The present model is closely related to the ferromagnetic—ferromagnetic—antiferromagnetic
chain [1] described by

(29)

L
Hppa = Z{_JF(Sijz - S3;_1+ 831+ 853;) + JaS3; - S3j+1) (30)
=

whereJg > 0 is the ferromagnetic coupling anyd the antiferromagnetic coupling. We note
that 3CuC} - 2dioxane is well modelled b¥frra [13]. This model can be transformed into [2]

H=Jo(1=2t1)> hg; 15+ Jo(L+11) Y (h3;5:01 + 31 5542)
J J

+Jo(Do = 2) Y h g 5; + Jo(Ao+ 1) Y (B3 5101+ hyja5540) (31)
j j
where
2Jg+ Jpa 2y +1
3 2y +1
y—1 y+1 Jr
t = t, = — A = — 32
] T T A (32)

which is a generalized version of our model (2) if parameteys, and7, run independently
of one another. Thus the same method can be applied to the model (30), to)glataikt.4,
where theM;/3 plateau exists foy < y.. Details of the numerical study of the model (30)
will be reported elsewhere.

Note added in proofVery recently, Tanaka’s group [27] experimentally studied the magnetic properties of a trimerized
S = % chain CyClg(H20)2 - 2HgC4SO,. We thank K Tanaka for showing us their experimental data prior to
publication and for fruitful discussion.
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