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Abstract. We study the plateau of the magnetization curve atM = Ms/3 (Ms is the saturation
magnetization) of theS = 1

2 trimerizedXXZ spin chain. By examining the level crossing of low-
lying excitations obtained from the numerical diagonalization, we precisely determine the phase
boundary between the plateau state and the no-plateau state on the1− t plane, where1 denotes
theXXZ anisotropy andt the magnitude of the trimerization. This quantum phase transition is of
the Berezinskii–Kosterlitz–Thouless type.

1. Introduction

In recent years the quantized plateau of the magnetization curve of spin chains has attracted
much attention. Hida [1] numerically studied theS = 1

2 ferromagnetic–ferromagnetic–
antiferromagnetic trimerized Heisenberg chain and found the plateau of the magnetization
curve atM = Ms/3 (Ms is the saturation magnetization) for some parameter region of
JF/JAF, whereJF andJAF are the ferromagnetic and antiferromagnetic couplings, respectively.
KO [2] analytically investigated Hida’s model to clarify the mechanism for the appearance
and disappearance of theM = Ms/3 plateau. Later related numerical and theoretical
findings [3–8, 11, 12, 14] are reported in the literature. The magnetization plateaus are also
found experimentally inS = 1 Ni compound [Ni2(Medpt)2(µ-ox)(µ-N3)]ClO4× 0.5H2O [9]
and inS = 1

2 Cu compound NH4CuCl3 [10]. The behaviour of the magnetization curve of
NH4CuCl3 is quite remarkable because magnetization plateaus are observed atM = ( 3

4)Ms

andM = ( 1
4)Ms but not atM = 0 andM = ( 1

2)Ms.
Oshikawa,et al [7] gave the necessary condition for the appearance of the magnetization

plateau:

n(S − 〈m〉) = integer (1)

where n is the periodicity of the state,S the magnitude of spins and〈m〉 the average
magnetization per one spin. Since (1) is the necessary condition, it depends on the details
of the models whether the magnetization plateau exists or not, even if condition (1) is satisfied.

In this paper we study theM = Ms/3 plateau of theS = 1
2 trimerizedXXZ spin chain

described by

H =
L∑
j=1

{J ′ [h3j−2,3j−1(1) + h3j−1,3j (1)] + Jh3j,3j+1(1)} (2)
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Figure 1. Sketch of the trimerizedXXZ chain.
The expression of the lower line corresponds to the
parametrized form (4).

where

hlm(1) = h⊥lm +1hzlm
h⊥lm = Sxl Sxm + Syl S

y
m hzlm = Szl Szm.

(3)

Our model is sketched in figure 1. Unfortunately there seems to be no report of finding the
Ms/3 plateau in existing one-dimensional materials to which the present model is applied.
However, our model is closely related to a ferromagnetic–ferromagnetic–antiferromagnetic
chain 3CuCl2 · 2dioxane [1,13], as will be discussed in section 4.

In section 2 we qualitatively discuss the properties of the transition between the plateau
and no-plateau states by use of the bosonized Hamiltonian. In section 3 we determine the
phase boundary between the plateau and no-plateau states from the numerical diagonalization
data by examining the crossings of the low-lying excitations [15]. Section 4 is devoted to a
discussion.

2. Transition between the plateau state and the no-plateau state

It is convenient to parametrize the Hamiltonian (2) as

H = J0

L∑
j=1

{(1− t)[h3j−2,3j−1(1) + h3j−1,3j (1)] + (1 + 2t)h3j,3j+1(1)} (4)

where

J0 = 2J
′
+ J

3
t = − J

′ − J
2J ′ + J

. (5)

The model is sketched in figure 1. The bosonized expression of the Hamiltonian (4) can be
obtained by the following procedure:

(a) Transforming (4) into the spinless fermion expression by use of the Jordan–Wigner
transformation. The spacing between the neighbouring spins is taken as the unit length.

(b) Linearizing the dispersion relation of the spinless fermionsω(k) = J0 cosk around
k = ±kF, wherekF ≡ π/3 corresponds to the band filling ofM = Ms/3. The Fermi
velocity atk = kF is vF = (

√
3/2)J0.

(c) Taking the effects of trimerization and the interactions between fermions into account
through a procedure similar to that of the standard bosonization technic.

From the above procedure, we obtain the following sine–Gordon Hamiltonian:

H = 1

2π

∫
dx

[
vsK(π5)

2 +
vs

K

(
∂φ

∂x

)2
]

+
yφvs

2π

∫
dx cos

√
2φ (6)

wherevs is the spin wave velocity of the system,5 is the momentum density conjugate toφ,
[φ(x),5(x ′)] = iδ(x − x ′), and the coefficientsvs,K, andyφ are related toJ0, t and1 as

vs =
√

3J0

√
AC K = 1

2π

√
C

A
yφvs = πJ0t (2 +1) (7)
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Figure 2. Flow diagram of the renormalization group equation (11). The
thick solid lines show the BKT lines and the thick dotted line the Gaussian
line.

where

A = 1

8π

(
1 +

5√
3π
1

)
C = 2π

(
1− 1√

3π
1

)
. (8)

We note that the expressions forA andC are in the lowest order of1. The dual fieldθ is
defined by∂xθ = π5, and we make the identificationφ = φ +

√
2π , θ = θ +

√
2π . We

note that the umklapp term (which exists in theM = 0 case and is important to describe the
transition between the spin-fluid state and the Néel state) does not exist, because 2kF is not
equal to the reciprocal lattice wavenumbers. The fieldφ is related to the fast varying (in space)
part of the spin densitySz(x) in the continuum picture as

Szfast(x) =
1

3

{
cos

(
2kFx − π

3
+
√

2φ
)

+
1

2

}
(9)

which makes the physical meaning ofφ clear. We note that the slowly varying part of the spin
density is proportional to∂φ/∂x.

As is well known, the excitation spectrum of the sine–Gordon model is either massive or
massless depending on the values ofK andyφ . In the massive case theMs/3 magnetization
plateau exists, and in the massless case it does not [2]. It is convenient to discuss the properties
of (6) in the framework of the renormalization group method. The renormalization group
equations for (6) are

dK (L)−1

d lnL
= 1

8
yφ(L)

2 dyφ (L)

d lnL
=
(

2− K(L)
2

)
yφ(L) (10)

whereL is an infrared cutoff. DenotingK(L) = 4(1 +y0(L)/2) nearK(L) = 4, we obtain

dy0 (L)

d lnL
= −yφ(L)2 dyφ (L)

d lnL
= −y0(L)yφ(L) (11)

and show its flow diagram in figure 2. The Berezinskii–Kosterlitz–Thouless (BKT) transition
occurs aty0 = |yφ|, shown by thick solid lines. The BKT nature of the transition between the
plateau state and the no-plateau state was first pointed out by one of the present authors (KO)
in [2]. At the BKT transition point, by substitutingy0 = |yφ| into equation (11), we have

y0(L) = y0

y0 ln(L/L0) + 1
(12)

wherey0 is the bare value. Wheny0 < 0 (i.e.,K < 4), any small (but not equal to zero)
amount of trimerization brings about the magnetization plateau. The phase boundary between
two plateau regions is a Gaussian line (thick dotted line), on which the critical exponents varies
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continuously. In the no-plateau region, the effect of the trimerization vanishes in the sense of
the renormalization group due to the strong quantum fluctuations.

We note that it is dangerous to apply the conventional phenomenological renormalization
group method to the BKT transition, as is fully discussed in [16].

3. Numerical approach

The scaling dimension of the primary fieldOm,n = exp(m
√

2φ + n
√

2θ) for yφ = 0 is given
by

xn,m = K

2
m2 +

1

2K
n2 (13)

wheren andm are integers with the periodic boundary condition (PBC). According to the
finite-size scaling theory by Cardy [17,18], the excitation energy of the finite-size system at a
critical point is related to the scaling dimension as

xm,n(L) = L

2πvs
(Em,n(L)− Eg(L)) (14)

whereEg(L) is the ground state energy of theL-spin system with PBC. Near the BKT transition
(K ≈ 4), the excitation energy is written as

L

2πvs
1Em,0(L) = 2m2 + y0(L)m

2 (15)

L

2πvs
1E0,n(L) = 1

8
n2 − y0(L)

1

16
n2 (16)

for integerm, n. Thus, considering equation (12), we have the logarithmic corrections for a
finite-size spectrum.

To determine the BKT transition point, we use the method developed by Nomura and
Kitazawa [15], in which the level crossings for some excitations are used. With the twisted
boundary condition (TBC)Sx,y3L+1 = −Sx,y1 , Sz3L+1 = Sz1, the integerm in the operatorOm,n
shifts tom+ 1

2 asOm,n→ Om+1/2,n. For the scaling dimensions of the operators
√

2 cos(φ/
√

2)
and
√

2 sin(φ/
√

2) we have the following finite-size corrections:

xc
1/2,0(L) = 1

2 + 1
4y0(L) + 1

2yφ(L)

xs
1/2,0(L) = 1

2 + 1
4y0(L)− 1

2yφ(L).
(17)

Note that scaling dimensionsxc,s
1/2,0 are not of the form of (15). This comes from the first-order

perturbation of the second term (cos
√

2φ term) in equation (6). Denotingyφ = ±y0(1 +w)
wherew measures the distance from the BKT transition point, we have foryφ > 0

xc
1/2,0(L) = 1

2 + 3
4y0(L)(1 + 2

3w)

xs
1/2,0(L) = 1

2 − 1
4y0(L)(1 + 2w)

(18)

and foryφ < 0

xc
1/2,0(L) = 1

2 − 1
4y0(L)(1 + 2w)

xs
1/2,0(L) = 1

2 + 3
4y0(L)(1 + 2

3w).
(19)

On the other hand, from equation (16) the scaling dimension ofO0,±2 is given by

x0,±2(L) = 1
2 − 1

4y0(L) (20)

from which we see thatx0,±2 andxc,s
1/2,0 (s for yφ > 0 and c foryφ < 0) cross linearly at the

BKT transition point (w = 0).
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In order to identify the excitations with those of the sine–Gordon model (6), we can use
the following symmetry. The Hamiltonian with PBC is invariant under the spin rotation around
thez axis, the translation by three sites, (Sj → Sj+3), and space inversion (Sj → SL−j+1).
Corresponding eigenvalues areM, the wavenumberq, andP = ±1. The space inversions in
the sine–Gordon model are

φ→−φ θ → θ + π/
√

2 x →−x. (21)

The magnetizationM is related ton asn = Ms/3−M. The ‘ground state’ energyEg is the
lowest one with [M = Ms/3, q = 0, P = 1].

In our model, the energy level corresponding to the operatorO0,±2 isE0(Ms/3± 2, 0, 1),
whereE0(M, q, P ) is the lowest energy with [M,q, P ]. However, we cannot directly compare
the energies with differentM. In the language of the spinless fermions, the difference inM

corresponds to the difference in the number of fermions,N . Thus to compare the energies
with differentM, we should useE − µN , whereµ is the chemical potential of the spinless
fermions. Sinceµ nearMs/3 is expressed as

µ = 1

4

{
E0

(
Ms

3
+ 2, 0, 1

)
− E0

(
Ms

3
− 2, 0, 1

)}
(22)

the excitation energy corresponding toO0,2 is

1E0,2 =
{
E0

(
Ms

3
+ 2, 0, 1

)
− E0

(
Ms

3
, 0, 1

)
− 2µ

}
= 1

2

{
E0

(
Ms

3
+ 2, 0, 1

)
+E0

(
Ms

3
− 2, 0, 1

)}
− E0

(
Ms

3
, 0, 1

)
. (23)

The same expression is obtained forO0,−2. Equation (23) can also be obtained by use of the
Legendre transformationE→ E −HM.

The excitation energies corresponding to the operators
√

2 cos(φ/
√

2) and
√

2 sin(φ/
√

2)
are obtained by the two lowest energies1E(M,P ) with the twisted boundary condition as

1Ec
1/2,0 = ETBC

(
Ms

3
, 1

)
− E

(
Ms

3
, 0, 1

)
1Es

1/2,0 = ETBC

(
Ms

3
,−1

)
− E

(
Ms

3
, 0, 1

) (24)

whereE(Ms, 0, 1) is the lowest energy with PBC. The excitation energies1E0,±2 and1Ec,s
1/2,0

(s foryφ > 0 and c foryφ < 0) should cross linearly at the BKT transition point.
Figure 3 shows the behaviour of1E0,±2 and1Ec

1/2,0 for L = 18 spins as functions of
anisotropy parameter1 whent = −0.25. From the crossing point, we obtain1c = −0.8389
for L = 18 spins. The BKT transition point for the infinite system can be obtained by
extrapolating the1c data toL = ∞, as shown in figure 4. Thus, we can draw the phase
diagram figure 5 on the1 − t plane. The point M (1 = −0.729) is the multicritical point
where two BKT lines meet together into the Gaussian line (shown by the thick dotted line)
on which the critical exponents vary continuously. The1 6 −1 region is the ferromagnetic
region.

In order to check the consistency, let us confirm the conformal anomalyc = 1 which is
related to the leading finite-size correction of the ‘ground state’ energy with PBC as [19,20]

Eg(L) = Lεg− πvsc

6L
+ · · · (25)

whereεg the energy per one spin for the infinite-size system. The spin wave velocityvs can
be obtained by

vs = lim
L→∞

L1E(q = 2π/L)

2π
(26)
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Figure 3. 1E0,±2 and1Ec
1/2,0 for L = 18 spins as

functions of anisotropy parameter1 when t = −0.25.
From the crossing point we obtain1c(L = 18) =
−0.8389.

Figure 4. Extrapolation of1c to L = ∞ when t =
−0.25. We obtain1c = −0.839.

Figure 5. Phase diagram on the1 − t plane. Closed
circles are the BKT transition point determined from the
numerical data as explained in the text. The thick dotted
line denotes the Gaussian line. The multicritical point M
corresponds to the point O of figure 2.

Figure 6. Spin wave velocity on the BKT transition line.

where1E(q = 2π/L) is the lowest excitation energy having the wavenumberq = 2π/L in
theM = Ms/3 space. Thus we can check the value ofc by use of equations (25) and (26).
We have found thatc = 1 is realized on the BKT line within the error of a few per cent. For
instance, in the case of(t,1) = (0.5,−0.881) on the BKT line, we obtainvsc = 0.212J0

through equation (25) andvs = 0.217J0 through equation (26). Figure 6 shows the spin wave
velocityvs on the BKT transition line.

From equations (17) and (20), we can eliminate the leading logarithmic correction at the
transition point (w = 0) using the following average:

3xs
1/2,0(L) + xc

1/2,0(L)

4
= 1

2
for yφ > 0

3xc
1/2,0(L) + xs

1/2,0(L)

4
= 1

2
for yφ < 0.

(27)

This relation is appropriate to the consistency check. The averaged scaling dimension
equation (27) on the BKT line is shown in figure 7. We can see that the averaged scaling
dimension is very close to12, which guarantees the consistency of our numerical method.
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Figure 7. Scaling dimension on the BKT line. Closed
circles arexc

1/2,0(L), open circlesxs
1/2,0(L) and closed

squares the averaged scaling dimension (27).

Figure 8. Phase diagram of the ‘xy-trimerization model’.

4. Discussion

We have obtained the phase diagram on the1− t plane as shown in figure 5. Two BKT lines
meet together into the Gaussian line at the multicritical point M where1 = 1M = −0.729. If
we putK = 4 in equations (7) and (8), we obtain1M = −3

√
3π/21= −0.777. This value is

slightly different from1M = −0.729, because the expression (8) is valid in the lowest order
of 1 near1 = 0. In the absence of the trimerization (t = 0), the present model is reduced to
the usualS = 1

2 XXZ chain, which is solvable by the Bethe ansatz. The numerical solution of
the Bethe ansatz equations leads to1M = −0.729 043 forM = Ms/3 andK = 4 [12,21,22],
which just agrees with our numerical values.

In figure 5, the slopes of the BKT lines fort > 0 and t < 0 near the multicritical
point M are the same as each other. This can be explained from the symmetry of the
bosonized Hamiltonian (6). Hamiltonian (6) is invariant under the transformationt ↔ −t
and
√

2φ ↔ √2φ + π . Away from the multicritical point M, on the other hand, the BKT
lines on the upper and lower planes are asymmetric with each other, as can be seen from
figure 5. This is quite reasonable because thet ↔ −t symmetry does not hold in the original
spin Hamiltonian (4). From the standpoint of the bosonized Hamiltonian, this comes from
the existence of higher-order terms [23] cos(2

√
2φ), cos(4

√
2φ), . . ., of which coefficients are

also proportional to the trimerization parametert . If these higher-order terms are taken into
account, the symmetry of the bosonized Hamiltonian under the transformationt ↔ −t and√

2φ ↔√2φ + π is lost, which explains the asymmetry of the BKT lines.
The mass-generating term in (6) is

J0t (2 +1)

2

∫
dx cos(

√
2φ). (28)

In the factor 2 +1, the first term comes from thex andy components of the trimerization,
and the second term from thez component. When1 < 0, they are competing. In theS = 1

2
ferromagnetic–antiferromagnetic alternating chain [24, 25], this kind of competition brings
about the transition between the Haldane state and the large-D state. In our case, however, this
competition only reduces the effect of the trimerization. In fact, we obtain the phase diagram
figure 8 for the ‘xy-trimerization model’ in which the trimerization exists only in theJ x − J x
andJ y − J y couplings and not in theJ z− J z coupling. We see that the trimerization effect is
reduced in figure 5 in comparison to figure 8, because the no-plateau region is wider in figure 5
than in figure 8. We note that the phase boundary of the ferromagnetic region is no longer
1 = −1, because theSU(2) symmetry is broken even at1 = −1 in thexy-trimerization
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model. This situation is similar to theS = 1
2 XXZ chain under the staggered magnetic

field [26]. This phase boundary can be calculated from the instability of the ferromagnetic
state against theM = Ms− 1 spin wave excitation, resulting in

1 = −1 + 2t +
√

9− 12t + 12t2

4
. (29)

The present model is closely related to the ferromagnetic–ferromagnetic–antiferromagnetic
chain [1] described by

HFFA =
L∑
j=1

{−JF(S3j−2 · S3j−1 + S3j−1 · S3j ) + JAS3j · S3j+1} (30)

whereJF > 0 is the ferromagnetic coupling andJA the antiferromagnetic coupling. We note
that 3CuCl2 · 2dioxane is well modelled byHFFA [13]. This model can be transformed into [2]

H̃ = J0(1− 2t⊥)
∑
j

h⊥3j−1,3j + J0(1 + t⊥)
∑
j

(h⊥3j,3j+1 + h⊥3j+1,3j+2)

+J0(10 − 2tz)
∑
j

hz3j−1,3j + J0(10 + tz)
∑
j

(hz3j,3j+1 + hz3j+1,3j+2) (31)

where

J0 = 2JF + JA

3
10 = −2γ + 1

2γ + 1
1

t⊥ = γ − 1

2γ + 1
tz = − γ + 1

2γ + 1
1 γ = JF

JA
(32)

which is a generalized version of our model (2) if parameters10, t⊥ andTz run independently
of one another. Thus the same method can be applied to the model (30), to obtainγc ' 15.4,
where theMs/3 plateau exists forγ < γc. Details of the numerical study of the model (30)
will be reported elsewhere.

Note added in proof. Very recently, Tanaka’s group [27] experimentally studied the magnetic properties of a trimerized
S = 1

2 chain Cu3Cl6(H2O)2 · 2H8C4SO2. We thank K Tanaka for showing us their experimental data prior to
publication and for fruitful discussion.

Acknowledgments

We would like to express our appreciation to K Nomura and M Oshikawa for fruitful
discussions. We also thank A Honecker for useful comment. A part of the numerical calculation
was done using program package TITPACK Ver.2 coded by H Nishimori.

References

[1] Hida K 1994J. Phys. Soc. Japan632359
[2] Okamoto K 1996Solid State Commun.98245
[3] Roji M and Miyashita S 1996J. Phys. Soc. Japan651994
[4] Tonegawa T, Nakao T and Kaburagi M 1996J. Phys. Soc. Japan653317
[5] Tonegawa T, Nishida T and Kaburagi M 1998PhysicaB 246–7368
[6] Totsuka K 1997Phys. Rev.B 573454
[7] Oshikawa M, Yamanaka M and Affleck I 1997Phys. Rev. Lett.781984
[8] Sakai T and Takahashi M 1998Phys. Rev.B 57R3201
[9] Narumi Y, Hagiwara M, Sato R, Kindo K, Nakano H and Takahashi M 1998PhysicaB 246–7509



Magnetization plateau in theS = 1
2 trimerizedXXZ chain 4609

[10] Shiramura W, Takatsu K, Kurniawan B, Tanaka H, Uekusa H, Ohashi Y, Takizawa K, Mitamura H and Goto T
1998J. Phys. Soc. Japan671548

[11] Cabra D C, Honecker A and Pujol P 1998Phys. Rev.B 586241
[12] Cabra D C and Grynberg M D 1999Phys. Rev.B 59119
[13] Ajiro Y, Asano T, Inami T, Aruga-Katori H and Goto T 1994J. Phys. Soc. Japan63859
[14] Honecker A 1999Phys. Rev.B 596790
[15] Nomura K and Kitazawa A 1998J. Phys. A: Math. Gen.317341
[16] Okamoto K and Nomura K 1996J. Phys. A: Math. Gen.262279
[17] Cardy J L 1984J. Phys. A: Math. Gen.17L385
[18] Cardy J L 1986Nucl. Phys.B 270186
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